OpenRouter Embeddings [OpenAI Compatible] Large Language Models
openrouter/router/openai/v1/embeddings
The OpenRouter Embeddings API with fal, powered by OpenRouter, provides unified access to a wide range of large language models - including GPT, Claude, Gemini, and many others through a single API interface.
Inference
Commercial use
Input
Result
Idle
Waiting for your input...
Waiting for your input...
You will be charged based on the number of input and output tokens.
Logs
π§© Usage with OpenAI Client (Embeddings API)
pythonfrom openai import OpenAI import os client = OpenAI( base_url="https://fal.run/openrouter/router/openai/v1", api_key="not-needed", default_headers={ "Authorization": f"Key {os.environ['FAL_KEY']}", }, ) response = client.embeddings.create( model="openai/text-embedding-3-small", input="An AI that learns to dream in colors humanity has never seen." ) embedding = response.data[0].embedding print("Embedding length:", len(embedding)) # Multiple texts example (batch encoding) texts = [ "An AI that learns to dream.", "A robot that remembers forgotten memories.", "A neural network that writes its own mythology.", ] batch_response = client.embeddings.create( model="openai/text-embedding-3-small", input=texts, ) for i, item in enumerate(batch_response.data): print(f"Text {i} embedding length:", len(item.embedding))
π§ͺ Comparing Embeddings (Simple Similarity Example)
pythonfrom openai import OpenAI import os import math client = OpenAI( base_url="https://fal.run/openrouter/router/openai/v1", api_key="not-needed", default_headers={ "Authorization": f"Key {os.environ['FAL_KEY']}", }, ) def cosine_sim(a, b): dot = sum(x * y for x, y in zip(a, b)) na = math.sqrt(sum(x * x for x in a)) nb = math.sqrt(sum(x * x for x in b)) return dot / (na * nb) texts = [ "An AI that learns to dream.", "A machine that hallucinates new worlds.", "A recipe for chocolate cake." ] resp = client.embeddings.create( model="openai/text-embedding-3-small", input=texts, ) emb_ai = resp.data[0].embedding emb_machine = resp.data[1].embedding emb_recipe = resp.data[2].embedding print("AI vs machine:", cosine_sim(emb_ai, emb_machine)) print("AI vs recipe:", cosine_sim(emb_ai, emb_recipe))
π Documentation
For more details, visit the official docs:
- π OpenRouter API Docs β https://openrouter.ai/docs/quickstart
- β‘ fal.ai API Docs β https://docs.fal.ai/model-apis