Wan 2.2 14B Image Trainer Training
About
Endpoint for basic input.
1. Calling the API#
Install the client#
The client provides a convenient way to interact with the model API.
npm install --save @fal-ai/client
Migrate to @fal-ai/client
The @fal-ai/serverless-client
package has been deprecated in favor of @fal-ai/client
. Please check the migration guide for more information.
Setup your API Key#
Set FAL_KEY
as an environment variable in your runtime.
export FAL_KEY="YOUR_API_KEY"
Submit a request#
The client API handles the API submit protocol. It will handle the request status updates and return the result when the request is completed.
import { fal } from "@fal-ai/client";
const result = await fal.subscribe("fal-ai/wan-22-image-trainer", {
input: {
training_data_url: "",
trigger_phrase: ""
},
logs: true,
onQueueUpdate: (update) => {
if (update.status === "IN_PROGRESS") {
update.logs.map((log) => log.message).forEach(console.log);
}
},
});
console.log(result.data);
console.log(result.requestId);
2. Authentication#
The API uses an API Key for authentication. It is recommended you set the FAL_KEY
environment variable in your runtime when possible.
API Key#
import { fal } from "@fal-ai/client";
fal.config({
credentials: "YOUR_FAL_KEY"
});
Protect your API Key
When running code on the client-side (e.g. in a browser, mobile app or GUI applications), make sure to not expose your FAL_KEY
. Instead, use a server-side proxy to make requests to the API. For more information, check out our server-side integration guide.
3. Queue#
Submit a request#
The client API provides a convenient way to submit requests to the model.
import { fal } from "@fal-ai/client";
const { request_id } = await fal.queue.submit("fal-ai/wan-22-image-trainer", {
input: {
training_data_url: "",
trigger_phrase: ""
},
webhookUrl: "https://optional.webhook.url/for/results",
});
Fetch request status#
You can fetch the status of a request to check if it is completed or still in progress.
import { fal } from "@fal-ai/client";
const status = await fal.queue.status("fal-ai/wan-22-image-trainer", {
requestId: "764cabcf-b745-4b3e-ae38-1200304cf45b",
logs: true,
});
Get the result#
Once the request is completed, you can fetch the result. See the Output Schema for the expected result format.
import { fal } from "@fal-ai/client";
const result = await fal.queue.result("fal-ai/wan-22-image-trainer", {
requestId: "764cabcf-b745-4b3e-ae38-1200304cf45b"
});
console.log(result.data);
console.log(result.requestId);
4. Files#
Some attributes in the API accept file URLs as input. Whenever that's the case you can pass your own URL or a Base64 data URI.
Data URI (base64)#
You can pass a Base64 data URI as a file input. The API will handle the file decoding for you. Keep in mind that for large files, this alternative although convenient can impact the request performance.
Hosted files (URL)#
You can also pass your own URLs as long as they are publicly accessible. Be aware that some hosts might block cross-site requests, rate-limit, or consider the request as a bot.
Uploading files#
We provide a convenient file storage that allows you to upload files and use them in your requests. You can upload files using the client API and use the returned URL in your requests.
import { fal } from "@fal-ai/client";
const file = new File(["Hello, World!"], "hello.txt", { type: "text/plain" });
const url = await fal.storage.upload(file);
Auto uploads
The client will auto-upload the file for you if you pass a binary object (e.g. File
, Data
).
Read more about file handling in our file upload guide.
5. Schema#
Input#
training_data_url
 string
* requiredURL to the training data.
trigger_phrase
 string
* requiredTrigger phrase for the model.
include_synthetic_captions
 boolean
Whether to include synthetic captions.
use_face_detection
 boolean
Whether to use face detection for the training data. When enabled, images will use the center of the face as the center of the image when resizing. Default value: true
use_face_cropping
 boolean
Whether to use face cropping for the training data. When enabled, images will be cropped to the face before resizing.
use_masks
 boolean
Whether to use masks for the training data. Default value: true
steps
 integer
Number of training steps. Default value: 1000
learning_rate
 float
Learning rate for training. Default value: 0.0007
is_style
 boolean
Whether the training data is style data. If true, face specific options like masking and face detection will be disabled.
{
"training_data_url": "",
"trigger_phrase": "",
"use_face_detection": true,
"use_face_cropping": false,
"use_masks": true,
"steps": 1000,
"learning_rate": 0.0007,
"is_style": false
}
Output#
Low noise LoRA file.
High noise LoRA file.
Config file helping inference endpoints after training.
{
"diffusers_lora_file": {
"url": "",
"content_type": "image/png",
"file_name": "z9RV14K95DvU.png",
"file_size": 4404019
},
"high_noise_lora": {
"url": "",
"content_type": "image/png",
"file_name": "z9RV14K95DvU.png",
"file_size": 4404019
},
"config_file": {
"url": "",
"content_type": "image/png",
"file_name": "z9RV14K95DvU.png",
"file_size": 4404019
}
}
Other types#
TrainingStage#
num_steps
 integer
Number of training steps for this stage. Default value: 50
num_warmup_steps
 integer
Number of warmup steps for this stage. Default value: 10
resolution
 ResolutionEnum
Resolution for this training stage. Default value: "1024"
Possible enum values: 64, 128, 256, 512, 768, 1024, 1280, 1536
aspect_ratio
 AspectRatioEnum
Aspect ratio for this training stage. Default value: "3:4"
Possible enum values: 21:9, 16:9, 4:3, 1:1, 3:4, 9:16, 9:21
batch_size
 integer
Batch size for this training stage. Default value: 1
learning_rate
 float
Learning rate for this training stage. Default value: 0.0001
learning_rate_scheduler
 LearningRateScheduleEnum
Learning rate scheduler. Default value: "linear"
Possible enum values: linear, cosine, cosine_with_restarts, polynomial, constant, constant_with_warmup, piecewise_constant
transformer_trainer_style
 TransformerTrainerStyleEnum
The style of the transformer trainer. Either 'both', 'split', 'transformer_1', or 'transformer_2'. Default value: "in_sequence"
Possible enum values: both, split, transformer_1_only, transformer_2_only, in_sequence
split_train_timestep
 float
The timestep to split the training into two parts. Only applicable when transformer_trainer_style is 'split'. Default value: 0.875
File#
url
 string
* requiredThe URL where the file can be downloaded from.
content_type
 string
The mime type of the file.
file_name
 string
The name of the file. It will be auto-generated if not provided.
file_size
 integer
The size of the file in bytes.
file_data
 string
File data