Hunyuan Part 3D to 3D
About
Run
1. Calling the API#
Install the client#
The client provides a convenient way to interact with the model API.
npm install --save @fal-ai/client
Migrate to @fal-ai/client
The @fal-ai/serverless-client
package has been deprecated in favor of @fal-ai/client
. Please check the migration guide for more information.
Setup your API Key#
Set FAL_KEY
as an environment variable in your runtime.
export FAL_KEY="YOUR_API_KEY"
Submit a request#
The client API handles the API submit protocol. It will handle the request status updates and return the result when the request is completed.
import { fal } from "@fal-ai/client";
const result = await fal.subscribe("fal-ai/hunyuan-part", {
input: {
model_file_url: "https://storage.googleapis.com/falserverless/model_tests/video_models/base_basic_shaded.glb"
},
logs: true,
onQueueUpdate: (update) => {
if (update.status === "IN_PROGRESS") {
update.logs.map((log) => log.message).forEach(console.log);
}
},
});
console.log(result.data);
console.log(result.requestId);
2. Authentication#
The API uses an API Key for authentication. It is recommended you set the FAL_KEY
environment variable in your runtime when possible.
API Key#
import { fal } from "@fal-ai/client";
fal.config({
credentials: "YOUR_FAL_KEY"
});
Protect your API Key
When running code on the client-side (e.g. in a browser, mobile app or GUI applications), make sure to not expose your FAL_KEY
. Instead, use a server-side proxy to make requests to the API. For more information, check out our server-side integration guide.
3. Queue#
Submit a request#
The client API provides a convenient way to submit requests to the model.
import { fal } from "@fal-ai/client";
const { request_id } = await fal.queue.submit("fal-ai/hunyuan-part", {
input: {
model_file_url: "https://storage.googleapis.com/falserverless/model_tests/video_models/base_basic_shaded.glb"
},
webhookUrl: "https://optional.webhook.url/for/results",
});
Fetch request status#
You can fetch the status of a request to check if it is completed or still in progress.
import { fal } from "@fal-ai/client";
const status = await fal.queue.status("fal-ai/hunyuan-part", {
requestId: "764cabcf-b745-4b3e-ae38-1200304cf45b",
logs: true,
});
Get the result#
Once the request is completed, you can fetch the result. See the Output Schema for the expected result format.
import { fal } from "@fal-ai/client";
const result = await fal.queue.result("fal-ai/hunyuan-part", {
requestId: "764cabcf-b745-4b3e-ae38-1200304cf45b"
});
console.log(result.data);
console.log(result.requestId);
4. Files#
Some attributes in the API accept file URLs as input. Whenever that's the case you can pass your own URL or a Base64 data URI.
Data URI (base64)#
You can pass a Base64 data URI as a file input. The API will handle the file decoding for you. Keep in mind that for large files, this alternative although convenient can impact the request performance.
Hosted files (URL)#
You can also pass your own URLs as long as they are publicly accessible. Be aware that some hosts might block cross-site requests, rate-limit, or consider the request as a bot.
Uploading files#
We provide a convenient file storage that allows you to upload files and use them in your requests. You can upload files using the client API and use the returned URL in your requests.
import { fal } from "@fal-ai/client";
const file = new File(["Hello, World!"], "hello.txt", { type: "text/plain" });
const url = await fal.storage.upload(file);
Auto uploads
The client will auto-upload the file for you if you pass a binary object (e.g. File
, Data
).
Read more about file handling in our file upload guide.
5. Schema#
Input#
model_file_url
 string
* requiredURL of the 3D model file (.glb or .obj) to process for segmentation.
point_prompt_x
 float
X coordinate of the point prompt for segmentation (normalized space -1 to 1).
point_prompt_y
 float
Y coordinate of the point prompt for segmentation (normalized space -1 to 1).
point_prompt_z
 float
Z coordinate of the point prompt for segmentation (normalized space -1 to 1).
point_num
 integer
Number of points to sample from the mesh. Default value: 100000
use_normal
 boolean
Whether to use normal information for segmentation. Default value: true
noise_std
 float
Standard deviation of noise to add to sampled points.
seed
 integer
The same seed and input will produce the same segmentation results.
{
"model_file_url": "https://storage.googleapis.com/falserverless/model_tests/video_models/base_basic_shaded.glb",
"point_num": 100000,
"use_normal": true
}
Output#
Segmented 3D mesh with mask applied.
Mesh showing segmentation mask 1.
Mesh showing segmentation mask 2.
Mesh showing segmentation mask 3.
best_mask_index
 integer
* requiredIndex of the best mask (1, 2, or 3) based on IoU score.
IoU scores for each of the three masks.
seed
 integer
* requiredSeed value used for generation.
{
"segmented_mesh": {
"url": "",
"content_type": "image/png",
"file_name": "z9RV14K95DvU.png",
"file_size": 4404019
},
"mask_1_mesh": {
"url": "",
"content_type": "image/png",
"file_name": "z9RV14K95DvU.png",
"file_size": 4404019
},
"mask_2_mesh": {
"url": "",
"content_type": "image/png",
"file_name": "z9RV14K95DvU.png",
"file_size": 4404019
},
"mask_3_mesh": {
"url": "",
"content_type": "image/png",
"file_name": "z9RV14K95DvU.png",
"file_size": 4404019
}
}
Other types#
File#
url
 string
* requiredThe URL where the file can be downloaded from.
content_type
 string
The mime type of the file.
file_name
 string
The name of the file. It will be auto-generated if not provided.
file_size
 integer
The size of the file in bytes.
file_data
 string
File data