FLUX.1 [dev] with Controlnets and Loras Image to Image
About
FLUX.1 [dev], next generation text-to-image model.
1. Calling the API#
Install the client#
The client provides a convenient way to interact with the model API.
npm install --save @fal-ai/client
Migrate to @fal-ai/client
The @fal-ai/serverless-client
package has been deprecated in favor of @fal-ai/client
. Please check the migration guide for more information.
Setup your API Key#
Set FAL_KEY
as an environment variable in your runtime.
export FAL_KEY="YOUR_API_KEY"
Submit a request#
The client API handles the API submit protocol. It will handle the request status updates and return the result when the request is completed.
import { fal } from "@fal-ai/client";
const result = await fal.subscribe("fal-ai/flux-general/rf-inversion", {
input: {
prompt: "Wearing glasses",
image_url: "https://storage.googleapis.com/falserverless/flux-general-tests/anime_style.png"
},
logs: true,
onQueueUpdate: (update) => {
if (update.status === "IN_PROGRESS") {
update.logs.map((log) => log.message).forEach(console.log);
}
},
});
console.log(result.data);
console.log(result.requestId);
2. Authentication#
The API uses an API Key for authentication. It is recommended you set the FAL_KEY
environment variable in your runtime when possible.
API Key#
import { fal } from "@fal-ai/client";
fal.config({
credentials: "YOUR_FAL_KEY"
});
Protect your API Key
When running code on the client-side (e.g. in a browser, mobile app or GUI applications), make sure to not expose your FAL_KEY
. Instead, use a server-side proxy to make requests to the API. For more information, check out our server-side integration guide.
3. Queue#
Submit a request#
The client API provides a convenient way to submit requests to the model.
import { fal } from "@fal-ai/client";
const { request_id } = await fal.queue.submit("fal-ai/flux-general/rf-inversion", {
input: {
prompt: "Wearing glasses",
image_url: "https://storage.googleapis.com/falserverless/flux-general-tests/anime_style.png"
},
webhookUrl: "https://optional.webhook.url/for/results",
});
Fetch request status#
You can fetch the status of a request to check if it is completed or still in progress.
import { fal } from "@fal-ai/client";
const status = await fal.queue.status("fal-ai/flux-general/rf-inversion", {
requestId: "764cabcf-b745-4b3e-ae38-1200304cf45b",
logs: true,
});
Get the result#
Once the request is completed, you can fetch the result. See the Output Schema for the expected result format.
import { fal } from "@fal-ai/client";
const result = await fal.queue.result("fal-ai/flux-general/rf-inversion", {
requestId: "764cabcf-b745-4b3e-ae38-1200304cf45b"
});
console.log(result.data);
console.log(result.requestId);
4. Files#
Some attributes in the API accept file URLs as input. Whenever that's the case you can pass your own URL or a Base64 data URI.
Data URI (base64)#
You can pass a Base64 data URI as a file input. The API will handle the file decoding for you. Keep in mind that for large files, this alternative although convenient can impact the request performance.
Hosted files (URL)#
You can also pass your own URLs as long as they are publicly accessible. Be aware that some hosts might block cross-site requests, rate-limit, or consider the request as a bot.
Uploading files#
We provide a convenient file storage that allows you to upload files and use them in your requests. You can upload files using the client API and use the returned URL in your requests.
import { fal } from "@fal-ai/client";
const file = new File(["Hello, World!"], "hello.txt", { type: "text/plain" });
const url = await fal.storage.upload(file);
Auto uploads
The client will auto-upload the file for you if you pass a binary object (e.g. File
, Data
).
Read more about file handling in our file upload guide.
5. Schema#
Input#
prompt
string
* requiredThe prompt to edit the image with Default value: undefined
The size of the generated image. Default value: undefined
Possible enum values: square_hd, square, portrait_4_3, portrait_16_9, landscape_4_3, landscape_16_9
Note: For custom image sizes, you can pass the width
and height
as an object:
"image_size": {
"width": 1280,
"height": 720
}
num_inference_steps
integer
The number of inference steps to perform. Default value: 28
seed
integer
The same seed and the same prompt given to the same version of the model
will output the same image every time. Default value: undefined
The LoRAs to use for the image generation. You can use any number of LoRAs and they will be merged together to generate the final image.
The LoRAs to use for the image generation which use a control image. You can use any number of LoRAs and they will be merged together to generate the final image.
The controlnets to use for the image generation. Only one controlnet is supported at the moment.
The controlnet unions to use for the image generation. Only one controlnet is supported at the moment.
EasyControl Inputs to use for image generation.
Use an image input to influence the generation. Can be used to fill images in masked areas. Default value: undefined
guidance_scale
float
The CFG (Classifier Free Guidance) scale is a measure of how close you want
the model to stick to your prompt when looking for a related image to show you. Default value: 3.5
use_cfg_zero
boolean
Uses CFG-zero init sampling as in https://arxiv.org/abs/2503.18886. Default value: false
sync_mode
boolean
If set to true, the function will wait for the image to be generated and uploaded
before returning the response. This will increase the latency of the function but
it allows you to get the image directly in the response without going through the CDN. Default value: false
num_images
integer
The number of images to generate. This is always set to 1 for streaming output. Default value: 1
enable_safety_checker
boolean
If set to true, the safety checker will be enabled. Default value: true
reference_image_url
string
URL of Image for Reference-Only Default value: undefined
reference_strength
float
Strength of reference_only generation. Only used if a reference image is provided. Default value: 0.65
reference_start
float
The percentage of the total timesteps when the reference guidance is to bestarted. Default value: 0
reference_end
float
The percentage of the total timesteps when the reference guidance is to be ended. Default value: 1
base_shift
float
Base shift for the scheduled timesteps Default value: 0.5
max_shift
float
Max shift for the scheduled timesteps Default value: 1.15
output_format
OutputFormatEnum
The format of the generated image. Default value: "png"
Possible enum values: jpeg, png
use_beta_schedule
boolean
Specifies whether beta sigmas ought to be used. Default value: false
sigma_schedule
SigmaScheduleEnum
Sigmas schedule for the denoising process. Default value: undefined
Possible enum values: sgm_uniform
scheduler
SchedulerEnum
Scheduler for the denoising process. Default value: "euler"
Possible enum values: euler, dpmpp_2m
image_url
string
* requiredURL of image to be edited Default value: undefined
controller_guidance_forward
float
The controller guidance (gamma) used in the creation of structured noise. Default value: 0.6
controller_guidance_reverse
float
The controller guidance (eta) used in the denoising process.Using values closer to 1 will result in an image closer to input. Default value: 0.75
reverse_guidance_start
integer
Timestep to start guidance during reverse process. Default value: 0
reverse_guidance_end
integer
Timestep to stop guidance during reverse process. Default value: 8
reverse_guidance_schedule
ReverseGuidanceScheduleEnum
Scheduler for applying reverse guidance. Default value: "constant"
Possible enum values: constant, linear_increase, linear_decrease
{
"prompt": "Wearing glasses",
"num_inference_steps": 28,
"controlnets": [],
"controlnet_unions": [],
"easycontrols": [],
"guidance_scale": 3.5,
"num_images": 1,
"enable_safety_checker": true,
"reference_strength": 0.65,
"reference_end": 1,
"base_shift": 0.5,
"max_shift": 1.15,
"output_format": "png",
"scheduler": "euler",
"image_url": "https://storage.googleapis.com/falserverless/flux-general-tests/anime_style.png",
"controller_guidance_forward": 0.6,
"controller_guidance_reverse": 0.75,
"reverse_guidance_end": 8,
"reverse_guidance_schedule": "constant"
}
Output#
The generated image files info. Default value: undefined
Default value: undefined
seed
integer
* requiredSeed of the generated Image. It will be the same value of the one passed in the
input or the randomly generated that was used in case none was passed. Default value: undefined
Whether the generated images contain NSFW concepts. Default value: undefined
prompt
string
* requiredThe prompt used for generating the image. Default value: undefined
{
"images": [
{
"url": "",
"content_type": "image/jpeg"
}
],
"prompt": ""
}
Other types#
LoraWeight#
path
string
* requiredURL or the path to the LoRA weights. Default value: undefined
Image#
url
string
* requiredDefault value: undefined
width
integer
* requiredDefault value: undefined
height
integer
* requiredDefault value: undefined
content_type
string
Default value: "image/jpeg"
EasyControlWeight#
control_method_url
string
* requiredURL to safetensor weights of control method to be applied. Can also be one of canny
, depth
, hedsketch
, inpainting
, pose
, seg
, subject
, ghibli
Default value: undefined
scale
float
Scale for the control method. Default value: 1
image_url
string
* requiredURL of an image to use as a control Default value: undefined
image_control_type
ImageControlTypeEnum
* requiredControl type of the image. Must be one of spatial
or subject
. Default value: undefined
Possible enum values: subject, spatial
IPAdapter#
path
string
* requiredHugging Face path to the IP-Adapter Default value: undefined
subfolder
string
Subfolder in which the ip_adapter weights exist Default value: undefined
weight_name
string
Name of the safetensors file containing the ip-adapter weights Default value: undefined
image_encoder_path
string
* requiredPath to the Image Encoder for the IP-Adapter, for example 'openai/clip-vit-large-patch14' Default value: undefined
image_encoder_subfolder
string
Subfolder in which the image encoder weights exist. Default value: undefined
image_encoder_weight_name
string
Name of the image encoder. Default value: undefined
image_url
string
* requiredURL of Image for IP-Adapter conditioning. Default value: undefined
mask_image_url
string
URL of the mask for the control image. Default value: undefined
mask_threshold
float
Threshold for mask. Default value: 0.5
scale
float
* requiredScale for ip adapter. Default value: undefined
ImageSize#
width
integer
The width of the generated image. Default value: 512
height
integer
The height of the generated image. Default value: 512
ControlNetUnion#
path
string
* requiredURL or the path to the control net weights. Default value: undefined
config_url
string
optional URL to the controlnet config.json file. Default value: undefined
variant
string
The optional variant if a Hugging Face repo key is used. Default value: undefined
The control images and modes to use for the control net. Default value: undefined
ControlNet#
path
string
* requiredURL or the path to the control net weights. Default value: undefined
config_url
string
optional URL to the controlnet config.json file. Default value: undefined
variant
string
The optional variant if a Hugging Face repo key is used. Default value: undefined
control_image_url
string
* requiredURL of the image to be used as the control image. Default value: undefined
mask_image_url
string
URL of the mask for the control image. Default value: undefined
mask_threshold
float
Threshold for mask. Default value: 0.5
conditioning_scale
float
The scale of the control net weight. This is used to scale the control net weight
before merging it with the base model. Default value: 1
start_percentage
float
The percentage of the image to start applying the controlnet in terms of the total timesteps. Default value: 0
end_percentage
float
The percentage of the image to end applying the controlnet in terms of the total timesteps. Default value: 1
ControlLoraWeight#
path
string
* requiredURL or the path to the LoRA weights. Default value: undefined
The scale of the LoRA weight. This is used to scale the LoRA weight
before merging it with the base model. Providing a dictionary as {"layer_name":layer_scale} allows per-layer lora scale settings. Layers with no scale provided will have scale 1.0. Default value: 1
control_image_url
string
* requiredURL of the image to be used as the control image. Default value: undefined
preprocess
PreprocessEnum
Type of preprocessing to apply to the input image. Default value: "None"
Possible enum values: canny, depth, None