Stable Diffusion XL Lightning

fal-ai/fast-lightning-sdxl/inpainting
Inference
Commercial use

About

Inpainting

1. Calling the API#

Install the client#

The client provides a convenient way to interact with the model API.

npm install --save @fal-ai/serverless-client

Setup your API Key#

Set FAL_KEY as an environment variable in your runtime.

export FAL_KEY="YOUR_API_KEY"

Submit a request#

The client API handles the API submit protocol. It will handle the request status updates and return the result when the request is completed.

import * as fal from "@fal-ai/serverless-client";

const result = await fal.subscribe("fal-ai/fast-lightning-sdxl/inpainting", {
  input: {
    image_url: "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png",
    mask_url: "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png",
    prompt: "a tiger sitting on a park bench"
  },
  logs: true,
  onQueueUpdate: (update) => {
    if (update.status === "IN_PROGRESS") {
      update.logs.map((log) => log.message).forEach(console.log);
    }
  },
});

2. Authentication#

The API uses an API Key for authentication. It is recommended you set the FAL_KEY environment variable in your runtime when possible.

API Key#

In case your app is running in an environment where you cannot set environment variables, you can set the API Key manually as a client configuration.
import * as fal from "@fal-ai/serverless-client";

fal.config({
  credentials: "YOUR_FAL_KEY"
});

3. Queue#

Submit a request#

The client API provides a convenient way to submit requests to the model.

import * as fal from "@fal-ai/serverless-client";

const { request_id } = await fal.queue.submit("fal-ai/fast-lightning-sdxl/inpainting", {
  input: {
    image_url: "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png",
    mask_url: "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png",
    prompt: "a tiger sitting on a park bench"
  },
  webhookUrl: "https://optional.webhook.url/for/results",
});

Fetch request status#

You can fetch the status of a request to check if it is completed or still in progress.

import * as fal from "@fal-ai/serverless-client";

const status = await fal.queue.status("fal-ai/fast-lightning-sdxl/inpainting", {
  requestId: "764cabcf-b745-4b3e-ae38-1200304cf45b",
  logs: true,
});

Get the result#

Once the request is completed, you can fetch the result. See the Output Schema for the expected result format.

import * as fal from "@fal-ai/serverless-client";

const result = await fal.queue.result("fal-ai/fast-lightning-sdxl/inpainting", {
  requestId: "764cabcf-b745-4b3e-ae38-1200304cf45b"
});

4. Files#

Some attributes in the API accept file URLs as input. Whenever that's the case you can pass your own URL or a Base64 data URI.

Data URI (base64)#

You can pass a Base64 data URI as a file input. The API will handle the file decoding for you. Keep in mind that for large files, this alternative although convenient can impact the request performance.

Hosted files (URL)#

You can also pass your own URLs as long as they are publicly accessible. Be aware that some hosts might block cross-site requests, rate-limit, or consider the request as a bot.

Uploading files#

We provide a convenient file storage that allows you to upload files and use them in your requests. You can upload files using the client API and use the returned URL in your requests.

import * as fal from "@fal-ai/serverless-client";

const file = new File(["Hello, World!"], "hello.txt", { type: "text/plain" });
const url = await fal.storage.upload(file);

Read more about file handling in our file upload guide.

5. Schema#

Input#

image_url string* required

The URL of the image to use as a starting point for the generation.

mask_url string* required

The URL of the mask to use for inpainting.

prompt string* required

The prompt to use for generating the image. Be as descriptive as possible for best results.

image_size ImageSize | Enum

The size of the generated image. Default value: square_hd

Possible enum values: square_hd, square, portrait_4_3, portrait_16_9, landscape_4_3, landscape_16_9

num_inference_steps NumInferenceStepsEnum

The number of inference steps to perform. Default value: "4"

Possible enum values: 1, 2, 4, 8

strength float

determines how much the generated image resembles the initial image Default value: 0.95

seed integer

The same seed and the same prompt given to the same version of Stable Diffusion will output the same image every time.

sync_mode boolean

If set to true, the function will wait for the image to be generated and uploaded before returning the response. This will increase the latency of the function but it allows you to get the image directly in the response without going through the CDN.

num_images integer

The number of images to generate. Default value: 1

embeddings list<Embedding>

The list of embeddings to use. Default value: ``

enable_safety_checker boolean

If set to true, the safety checker will be enabled.

expand_prompt boolean

If set to true, the prompt will be expanded with additional prompts.

format FormatEnum

The format of the generated image. Default value: "jpeg"

Possible enum values: jpeg, png

{
  "image_url": "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png",
  "mask_url": "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png",
  "prompt": "a tiger sitting on a park bench",
  "image_size": "square_hd",
  "num_inference_steps": 4,
  "strength": 0.95,
  "num_images": 1,
  "embeddings": [],
  "format": "jpeg"
}

Output#

images list<Image>* required

The generated image files info.

timings Timings* required
seed integer* required

Seed of the generated Image. It will be the same value of the one passed in the input or the randomly generated that was used in case none was passed.

has_nsfw_concepts list<boolean>* required

Whether the generated images contain NSFW concepts.

prompt string* required

The prompt used for generating the image.

{
  "images": [
    {
      "url": "",
      "content_type": "image/jpeg"
    }
  ],
  "prompt": ""
}

Other types#

ImageSize#

width integer

The width of the generated image. Default value: 512

height integer

The height of the generated image. Default value: 512

LoraWeight#

path string* required

URL or the path to the LoRA weights. Or HF model name.

scale float

The scale of the LoRA weight. This is used to scale the LoRA weight before merging it with the base model. Default value: 1

Embedding#

path string* required

URL or the path to the embedding weights.

tokens list<string>

The list of tokens to use for the embedding. Default value: <s0>,<s1>

Image#

url string* required
width integer* required
height integer* required
content_type string

Default value: "image/jpeg"