ControlNeXt SVD Video to Video
About
Run
1. Calling the API#
Install the client#
The client provides a convenient way to interact with the model API.
npm install --save @fal-ai/clientMigrate to @fal-ai/client
The @fal-ai/serverless-client package has been deprecated in favor of @fal-ai/client. Please check the migration guide for more information.
Setup your API Key#
Set FAL_KEY as an environment variable in your runtime.
export FAL_KEY="YOUR_API_KEY"Submit a request#
The client API handles the API submit protocol. It will handle the request status updates and return the result when the request is completed.
import { fal } from "@fal-ai/client";
const result = await fal.subscribe("fal-ai/controlnext", {
  input: {
    image_url: "https://storage.googleapis.com/falserverless/model_tests/musepose/ref.png",
    video_url: "https://storage.googleapis.com/falserverless/model_tests/musepose/dance.mp4"
  },
  logs: true,
  onQueueUpdate: (update) => {
    if (update.status === "IN_PROGRESS") {
      update.logs.map((log) => log.message).forEach(console.log);
    }
  },
});
console.log(result.data);
console.log(result.requestId);2. Authentication#
The API uses an API Key for authentication. It is recommended you set the FAL_KEY environment variable in your runtime when possible.
API Key#
import { fal } from "@fal-ai/client";
fal.config({
  credentials: "YOUR_FAL_KEY"
});Protect your API Key
When running code on the client-side (e.g. in a browser, mobile app or GUI applications), make sure to not expose your FAL_KEY. Instead, use a server-side proxy to make requests to the API. For more information, check out our server-side integration guide.
3. Queue#
Submit a request#
The client API provides a convenient way to submit requests to the model.
import { fal } from "@fal-ai/client";
const { request_id } = await fal.queue.submit("fal-ai/controlnext", {
  input: {
    image_url: "https://storage.googleapis.com/falserverless/model_tests/musepose/ref.png",
    video_url: "https://storage.googleapis.com/falserverless/model_tests/musepose/dance.mp4"
  },
  webhookUrl: "https://optional.webhook.url/for/results",
});Fetch request status#
You can fetch the status of a request to check if it is completed or still in progress.
import { fal } from "@fal-ai/client";
const status = await fal.queue.status("fal-ai/controlnext", {
  requestId: "764cabcf-b745-4b3e-ae38-1200304cf45b",
  logs: true,
});Get the result#
Once the request is completed, you can fetch the result. See the Output Schema for the expected result format.
import { fal } from "@fal-ai/client";
const result = await fal.queue.result("fal-ai/controlnext", {
  requestId: "764cabcf-b745-4b3e-ae38-1200304cf45b"
});
console.log(result.data);
console.log(result.requestId);4. Files#
Some attributes in the API accept file URLs as input. Whenever that's the case you can pass your own URL or a Base64 data URI.
Data URI (base64)#
You can pass a Base64 data URI as a file input. The API will handle the file decoding for you. Keep in mind that for large files, this alternative although convenient can impact the request performance.
Hosted files (URL)#
You can also pass your own URLs as long as they are publicly accessible. Be aware that some hosts might block cross-site requests, rate-limit, or consider the request as a bot.
Uploading files#
We provide a convenient file storage that allows you to upload files and use them in your requests. You can upload files using the client API and use the returned URL in your requests.
import { fal } from "@fal-ai/client";
const file = new File(["Hello, World!"], "hello.txt", { type: "text/plain" });
const url = await fal.storage.upload(file);Auto uploads
The client will auto-upload the file for you if you pass a binary object (e.g. File, Data).
Read more about file handling in our file upload guide.
5. Schema#
Input#
image_url string* requiredURL of the reference image.
video_url string* requiredURL of the input video.
height integerHeight of the output video. Default value: 1024
width integerWidth of the output video. Default value: 576
guidance_scale floatGuidance scale for the diffusion process. Default value: 3
num_inference_steps integerNumber of inference steps. Default value: 25
max_frame_num integerMaximum number of frames to process. Default value: 240
batch_frames integerNumber of frames to process in each batch. Default value: 24
overlap integerNumber of overlapping frames between batches. Default value: 6
sample_stride integerStride for sampling frames from the input video. Default value: 2
decode_chunk_size integerChunk size for decoding frames. Default value: 2
motion_bucket_id floatMotion bucket ID for the pipeline. Default value: 127
fps integerFrames per second for the output video. Default value: 7
controlnext_cond_scale floatCondition scale for ControlNeXt. Default value: 1
{
  "image_url": "https://storage.googleapis.com/falserverless/model_tests/musepose/ref.png",
  "video_url": "https://storage.googleapis.com/falserverless/model_tests/musepose/dance.mp4",
  "height": 1024,
  "width": 576,
  "guidance_scale": 3,
  "num_inference_steps": 25,
  "max_frame_num": 240,
  "batch_frames": 24,
  "overlap": 6,
  "sample_stride": 2,
  "decode_chunk_size": 2,
  "motion_bucket_id": 127,
  "fps": 7,
  "controlnext_cond_scale": 1
}Output#
The generated video.
{
  "video": {
    "url": "",
    "content_type": "image/png",
    "file_name": "z9RV14K95DvU.png",
    "file_size": 4404019
  }
}Other types#
File#
url string* requiredThe URL where the file can be downloaded from.
content_type stringThe mime type of the file.
file_name stringThe name of the file. It will be auto-generated if not provided.
file_size integerThe size of the file in bytes.